Closing Wed. Apr 6: HW_1A, 1B, 1C Read newsletter and see new postings. Read sections 5.2, 5.3, and 5.4.

Entry Tasks: Approximate the area under $f(x)=1+x^{2}$ from $x=2$ to $x=3$ using Riemann sums with $n=4$ subdivisions and right endpoints.

Step 1: $\Delta x=\frac{b-a}{n}=$
Step 3:
Area of Rect $1=f\left(x_{1}\right) \Delta x=$ Area of Rect $2=f\left(x_{2}\right) \Delta x=$ Area of Rect $3=f\left(x_{3}\right) \Delta x=$ Area of Rect $4=f\left(x_{4}\right) \Delta x=$

Pattern:

$$
\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x=
$$

Answer: Area \approx

What is the general pattern for any n ?

Pattern: $x_{i}=a+i \Delta x=$

Another Quick Example:

Write down the general Riemann sum definition of the area from $x=5$ to $x=7$ under

$$
f(x)=3 x+\sqrt{x}
$$

$\Delta x=\frac{b-a}{n}=$
$x_{i}=a+i \Delta x=$
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=$

Velocity/Distance and Reimann Sums

When velocity is a constant:
Distance $=$ Velocity \times Time

If velocity is not constant, we can break the problem into subdivisions and approximate by assuming that velocity is constant over each subdivision.

Example: You are accelerating in a car. You get the following measurements of your velocity.

$\mathrm{t}(\mathrm{sec})$	0	0.5	1.0	1.5	2.0
$\mathrm{v}(\mathrm{t})(\mathrm{ft} / \mathrm{s})$	0	6.2	10.8	14.9	18.1

Estimate the distance traveled from 0 to 2 seconds.

5.2 The Definite Integral

Def' n : We define the definite integral of $f(x)$ from $x=a$ to $x=b$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

